Packages

c

lamp.autograd

MaskFill

case class MaskFill(scope: Scope, input: Variable, mask: Variable, fill: Double) extends Op with Product with Serializable

Linear Supertypes
Serializable, Product, Equals, Op, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. MaskFill
  2. Serializable
  3. Product
  4. Equals
  5. Op
  6. AnyRef
  7. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Instance Constructors

  1. new MaskFill(scope: Scope, input: Variable, mask: Variable, fill: Double)

Value Members

  1. val fill: Double
  2. val input: Variable
  3. val joinedBackward: Option[(STen) => Unit]
    Definition Classes
    Op
  4. val mask: Variable
  5. val params: List[(Variable, (STen, STen) => Unit)]

    Implementation of the backward pass

    Implementation of the backward pass

    A list of input variables paired up with an anonymous function computing the respective partial derivative. With the notation in the documentation of the trait lamp.autograd.Op: dy/dw2 => dy/dw2 * dw2/dw1. The first argument of the anonymous function is the incoming partial derivative (dy/dw2), the second argument is the output tensor into which the result (dy/dw2 * dw2/dw1) is accumulated (added).

    If the operation does not support computing the partial derivative for some of its arguments, then do not include that argument in this list.

    Definition Classes
    MaskFillOp
    See also

    The documentation on the trait lamp.autograd.Op for more details and example.

  6. def productElementNames: Iterator[String]
    Definition Classes
    Product
  7. val scope: Scope
  8. val value: Variable

    The value of this operation

    The value of this operation

    Definition Classes
    MaskFillOp